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Electromagnetic waves in linear media 

Pierre Hilliont 
Instimt Hemi Poin&, 75231 Paris, France 

Received 20 December 1994 

Abstract. Using the Laplace transform and the Belmmi-Moses fields we present a method for 
analysing the propagation of electromagnetic waves with arbitrary time dependence in a medium 
with constant permittivity and permeabilily. The initial value problem for the re, m and rm 
solutions of Maxwell's equations is discussed for different point sources in order to obtain the 
solutions for arbitrary initial data by the Green function method, 

1. Introduction 

The steady-state electromagnetism used successfully by Muller [I] has two physical 
drawbacks, stressed recently by Harmuth [Z], since it lies outside the conservation law 
of  energy and outside the causality law. This uncomfortable situation suggests that we 
look for solutions of Maxwell's equations in the time domain rather than in the frequency 
domain, especially since digital technology for electromagnetism is becoming available. 

This problem has previously been discussed by authors such as Felsen 131, Harmuth 
[2,4], and recently Weston [5] and Kristensson and Rikte [6] using different techniques. 
We will consider electromagnetic waves with arbitrary time dependence and propagating in 
a medium with constant permittivity and permeability, E and j~ [n. 

The particular form of the Maxwell-Heaviside equations makes it possible to develop 
the electromagnetic field on the Beltrami eigenvectors of the curl operator and to use the 
1D Laplace transform with respect to time. In addition, we use the 3D complex formalism 
of electromagnetism [8] developed elsewhere in a different context; here it appears only as 
a tool facilitating analysis 191. 

The mathematical formulation of the problem to be discussed is as follows. Let &z, t) 
be the 3D complex vector [8] 

(1) 
where E, W are the elechic and magnetic fields, i = (-l)'l2 and E and ,U are the permittivity 
and permeability, respectively (some other definitions of k are possible [9]). Then, the 
Maxwell-Heaviside equations 

&z, t )  = E ' / ~ E ( z ,  t )  + ip.'/'H(z, r) 

v A E ( Z ,  t )  = -pC-la,H(z, t )  V . H ( z ,  t )  = 0 
(2) v A H ( z ,  t )  = E C - ' a l E ( Z ,  t )  v. E(=, t )  = 0 

become 

v A A(=, I )  = jm-'atA(z, t)  v &z, r) = o ( 3 4  

t Correspondence address: 86 Bis Route de Croissy, 78110 Le V&inet, Fraoce. 
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where V is the nabla symbol, where n = (&p)'D is the refractive index and c is the velocity 
of light. Then, one look for the solutions of equation (34 satisfying the initial condition 

k ( ~ ,  t),,o = A(z, 0). (36) 

Now applying the Laplace transform [IO] 

CO 

F ( s )  = e-"k'(t)dt Res > 0 (4) 

to equation (3) gives 

V A A(s, s) - inc-'[sA(z, s) - A(z, O)] = 0 V . A(x, s) = 0 (5) 

so that we now need to solve equation (5). This is achieved with the help of the Beltrami- 
Moses fields to be discussed in the next section and where the timedependent solutions are 
the inverse Laplace transform of the s-dependent solutions. 

2. Beltrami-Moses fields 

The Beltrami vectors B(x) are the eigenvectors of the curl operator 

v A B(e) = kB@) 0 E B3 (6) 

with the eigenvalue k.  The Beltrami fields are used in many branches of physics (mainly in 
fluid mechanics); they were introduced by Moses [l I] into electromagnetism in a particular 
form which justifies our calling them Beltrami-Moses fields. Moses has proved that in his 
formulation the spectrum of the curl operator comprises the three points k = 0, &I. We 
give a succinct account of the properties of the Beltrami-Moses fields using a recent paper 
by Moses and Prosser [12]. 

The Beltrami-Moses fields are 3D complex vectors $(x, p ;  k )  depending on x and on 
a vector p in momentum space such that 

v A ~ ( x , ~ ; k ) = k l p l ~ ( x , p ; k )  x = ( x i , x z , x 3 )  P = ( P I , P z . P ~ )  (7) 

with the eigenvalues k = 0, f l  and IpI the modulus of the vector p.  - .- . 
The complex vectors $ satisfy the orthogonality and completeness relations ( j ,  m = 

1,2,3) 

In these relations the bar and the dot denote respectively the complex conjugation and the 
scalar product, 8 0  is the Dirac distribution, 8.. the Kronecker symbol and c$j, & are the 
components of the vectors $ and 6. 
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One has the relations 

v - . G(~, k )  = -i(zn)-3r-&*sk, (90) 
+(x, p; k) = -e-2ikv G(x,P; k )  (96) 

where U is the polar angle of p and 

p = Ipl(sin U cos U ,  sinu sin U, cos U). (10) 

With f i  = 1pIp-l we have explicitly 

(1 1 4  
(1 16) 

-312 ipr +(z,p;O) =-(W e li 
Gj(z,p; i l )  = 4 % ) - 3 ' 2  e i p s  @j@,&l) j = 1 , 2 , 3 .  

and 

V(x) = / +(G p; k ) f  07, k) dp (13) 
k = O , i l  

where f@, k )  is a scalar function. Because of the completeness and orthogonality relations 
(8) the expansion coefficient can be obtained from 

f b, k) = &z. P; k ) .  V (Z)  d l .  (14) S "  
We recently used the Beltrami-Moses fields to solve the so-called H a m "  problem [13 ] ;  
a more general discussion of these fields may be found in that paper. 

3. Initial value problems in electromagnetism 

The solutions of initial value problems for Maxwell's equations are the bounded solutions 
to equation (5) with specified data L(z, 0). Let us apply h e  expansion (13 )  to the complex 
vector fields h(z, s) and A(%, 0): 

Substituting (15) into ( 5 )  and taking (9a) into-account we obtain the algebraic system of 
equations 

klpl f (p, s; k) - inc-'(sf(p, s; k )  - f ( p ,  0; k)) = 0 (16a) 
f@,  s; 0) = 0. (W 
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From (16a) and (166) we obtain 

Substituting (176) and (15) gives the solutions of Maxwell's equations in the s-domain: 

where, according to (14), f @ , 0 ; k )  is obtained from the initial data A(z.0) for the 
electromagnetic field by the relation 

f@, 0; k )  = / 9(z. P; k) * A(%, 0) dz. (194 

Using (Ila) and according to (19) the condition (17) becomes 

To summarize, provided that the initial data satisfy the condition (196) the solution of 
the problem in the s-domain is given by (18). Consequently the time-dependent solution is 
the inverse Laplace transform L-'[h(z ,  s)] of (18), that is [lo] 

d+im 
L-'[A(z,  s)) = A(z, t )  = (2xi)-' / es'A(z,s)ds (20) 

d-im 

where d is an abscissa in the complex s-plane with all the singularities of A(z, s) on its 
left-hand side. In most cases one has to compute numerically the inverse Laplace transform 
(20). This task is often made difficult since the inversion is, in Hadamard's terminology 
[14], an 'ill posed' problem. It would be interesting to obtain the solutions of Maxwell's 
equations for point sources in order to obtain the solutions for arbitrary initial data by the 
Green's function method. We discuss these particular solutions in the next section. 

Remark. 
of F(s )  at the real axis of s: 

Let us also note the Widder inverse formula [lS] which involves only the values 

which we may also Mite as 

The Widder formula gives the interesting relation 

F ( r )  d r  = lim (-e/t)" { S Y }  t > O  
n-tm s=n/t 

which determines values of t for which f(:) is impulsive; elsewhere the l i t  is 
automatically zero. 
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4. Initial value problems with point sources 

4.1,  pulses 

We first assume that the scalar functions f(p, 0; k) ,  k = rtl, is 

Jb, 0; U = [a(C)k + b(e)')lexp(-ip3e)g(pl)6(pz) (24) 

where a and b are arbitrary complex functions and 8(p1,2) is the Dirac distribution. 
Substituting (24) into (1%) and using (llb) and (12) a simple calculation gives 

Al(z, 0) = f ia (e )S(z  - 5 )  

A2(z,O) = i&b(:)S(z - t) 
A3(0.0) = 0. 

(254 

Since p1 = pz = 0 implies Ipl = lp3l and @I = -k, @* = -i and @3 = 0, one checks 
easily that the condition (19b) is fulfilled since 

( 2 5 ~  / d z  e - b Z  [ P I ~ O )  + imb(t)lS(z - 5 )  = 0. 

Now substituting (24) into (18) we obtain 

AI(z,s) = i ( 4 ~ r ) - ' ~ ~ x / d p 3 l a ( S )  +kbO)] { s  +ikcp~n-']-'exp[ip~(z - 511 
k 

A ~ ( z ,  S) = 0. 
Then, using the Fourier transform relation 1161 

(Zn)-'lz dp Sp"(a4 ip)-' = e*axU(x) Rea > 0 (27) 
-m 

where U is the step function, we obtain from (26) the following: 

s) = nc-'k({)exp(-nsz - e/c) 

A&, s) = inc-'Zb(e) exp(-nsz - ( / c )  (28) 

A ~ ( z ,  S) = 0 

L-1 
and since we have [lo] 

) = s a  + nz/c) (29) 
the inverse Laplace transform of (28) is 

i l ( Z , t )  =nc-'&8[t+n(z-5)/c] 

&(z, t )  = inc-'&S[t + n(z - C)/CI 

A& t )  = 0. 

S[n(z - S)/c] = cn-lqz - 5 )  

(304  

The solution (30) represent a TEM electromagnetic pulse propagating in the zdirection. 
Using the relation 

( 3 0 ~  
one checks easily that the solution (30) satisfies the initial condition (25). 
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4.2. Pulsed infiitely long magnetic und electric sources 

In these cases one has for k = f l  . 

f h  0; k) = I&L 6 )  + b h  DPI exp[-i(mtl+ ~ 3 0 1 6 ( ~ 1 )  (31) 

where a and b are now arbitrary functions of 7 and 6. Substituting (31) into (15b) and 
using ( l lb)  and (12) we obtain 

where 6’ is the derivative of the Dirac distribution since 

IPl = @: + P W 2  and $1 = -k, $1 = -ip3, $3 = ipz. 

Then, using the relation 

+CO 

f ( ~ ) a ’ ( x  - Y )  dy -f‘(x) L 
one proves easily that the condition (19b) is fulfilled since 

+m 

d~e’p51p14v,  OXY - tl)Kz - 0 + iFzb(% W ( Y  - v)a’(z - f )  L 
- imb(% W ’ ( Y  - M z  - Cl} = 0. 

Now, substituting (31) into (18) gives 

(33) 

At(% S )  = (8n - lP J d ~ ~ d ~ 3  explipdz - 5 ) I e x p h ~ d y  - tl)I 

x (a + kblpl)(s + ikcnlpl)-’ (34) 

and similar expressions for Az(z,s) with dp3 replaced by ip3dp3, and for A3(z,s) with 
dpz replaced by -ipzdpz. In these expressions Ipl = (p,” + p:)’/’. Then, using the 
variables 

z - f  = rcos@ y - n = r sin@ p3 = lplcos0 p2 = Ipl sin0 ( 3 5 4  

and writing 
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we obtain 

and 

AI (I, s; 6 )  = -in-'~(Zn)-~/~ / dlpl l ~ l ~ ~ ( l ~ l ) ( ~ ~  + cz~-21~lz)-1 

Az(I, s; b) = is(2n j-'l2 

A&, s; b)  = -is(2n)-'12 

dlpl IpI2I(lp1)(s2 + c2n-21p12)-' (36b) s 
s dlpl IplzZ(lpl)(s2 + c2n-21p12)-1. 

From ( 3 6 ~ )  and (36b) we obtain the relations 

cosq%(z, s; a) - sin&Mx, s; a) = -ic/sna,Al(z, s; a)  

sin4Az(e, s; a)  + cos'4A3(1, s; a)  =' -ic/snramAl(z, s; a)  

F'~+A~(I , s ;  6 )  - a,Az(z,s; b)  = -ins/ccos@Al(x,s; b) 

r-'a+Az(x, s; b) + arh3(z, s; b) = ins/csin4Al(x, s; b) 

(374 

and 

(376) 

so that one has just to compute Al(x, s; a)  and &(I, s; b). 
In the appendix we prove the following results. 

(i) The expressions of A I  (I, s; a) and &(I, s; b)  are 

&(I, s; a) = 21/2an2c-2sKo(nrs/c) (384  
&(I, s; b) = -2*/'bn 2 c -2 se -01 (1 -ee-m/2)-'Q~/2(coshor) - i2'/'bn/cr(l -e-a)-' 

where KO is the modified Bessel function of the second kind of order zero, QLIl2 is an 
associated Legendre function of the second kind, and eu = 2c/nrs. 

(ii) The inverse Laplace transforms of (38a) and (38b) are 

AI(%, t; a )  = 21Wc-za ,{~( t  - nr/c)( t2-  n2c-2rz)-1/z} (394  
(39b) xz(z, t; b)  = -21/2nzc-zk(t - nr /c )  - i23/2r-Zsinh(2ct/nr) 

where U is the step function and I? is the inverse Laplace transform 

I? = L-'{se'/*(l- e~")-'Q~,,,(cosha)}. 

In (38) and (39) a and b are written for a(?, :) and b(q, 6) respectively. The function I? 
has no simple analytical expression. 

(iii) The initial condition (32) for &I, t) = &I, f ;  a)  + i ( x ,  t; b) is fulfilled. 
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To complete the solution of this particular initial value problem one has still to compute 
the components Az(z, t) and L(z ,  i). Now, since AI(=, s; a) does not depend upon @, 
and since. sa,F(nrs/c) = ra,F(nrs/c) we obtain from (374 

A z ( z , s ; a )  = -iccos$/snarA1(z,s; a) = -iccos@/masAl(x,s; a) 

Ag(z,s; a) = icsin@/sna,Al(z,s; a) = icsin@/rnasAl(z,s; a) 

and using the relation [lo] d/dsF(s) = L(-tF(r)) we find 

Substituting (39a) into (40) gives the explicit expression of the components &(E, t ;  a) and 
&(z, t;  a). NOW, the solution of (3%) is 

where the function A(z, s; b) satisfies the equation 

r-'a+A(z, s; b) - s; 6) = -inc-'sAl(z, s; b) 

which reduces to 

a,A(z; s; b) = inc-'sAl(z, s; b) ( 4 1 ~  

since A1 (a, s; b) is a function of nrs lc  that does not depend on @, so we obtain from (416) 

A(=, s; b) = inc-l Al(z ,  s; b)sdr 

A ~ ( Z ,  s; b) ds 

because s d r  = rds. Then, using the relation [lo] L-'SF(s)ds  = F(t)t-' we obtain 
d(z, t ;  b) = inr(ct)-lil(z, t; b), and according to (41) 

(42) 

s 
s = inrc-' 

A&, t ;  b) = -icos@nr/cti\l(z; z; b) 
&(z, t ;  b) = isin@nr/cti l(z,  t ;  b) .  (43) 

Substituting (39b) into (43) gives the explicit expressions for &(z, t;  b) and &(z, t ;  b). 
The real and imaginary parts of the expressions (39), (40) and (41) represent respectively 
TE and TM electromagnetic pulses with the transverse component orthogonal to the yz-plane 
and satisfying the initial condition (32). 

We may also generate initial data in a plane. Using the polar coordinates 

y = r c o s e  z = r s i n e  p ~ = I p l c o s @  p3=Iplsin@ (44) 

and the initial scalar function 

J@,  0, k) = (ak + b)S(pl)lPl-1S(lPl - W(@ - 40) (45) 
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where a and b are arbitrary constants. We obtain easily from (15) 

AI(z, 0) = aexp[ikr cos(# - $0)) 

Xz(z.0) = bcos$~expIircos(#-q5o)) (46) 

A3(z, 0) = -bsinq5oexp{ikrcos(# - $0)) 

2655 

which represents a sinusoidal source in the xy-plane. Another simple example is obtained 
with 

(47) fb, 0; k) = (ak + b)(pm)-'a(pdI1 - exp(- i~~v)lI l  - exp(-imOl. 

Substituting (47) into (15) we obtain 

Adz, 0) = - d U ( y )  - U ( y  - v)IU(z) - U(Z - 0 1  

Adz, 0) = m(Y) - w y  -,v)JV(z) - U(Z - 0 1  

Adz, 0) = W ( y )  - U(Y - v ) I [ W  - S(Z - 0 1  (48) 

corresponding to initial data on the rectangle with vertices at (O,O), (q,O), (v f )  and (0, c). 

5. TEM, m and TM pulses 

To obtain more general ?EM impulse solutions we consider the function 

t m  

h, 0; k) = W l ) S ( p d  / dHa(t)k + b(f)l exp(-ip3f) 
-m 

(49) 

instead of (24) and we assume that 

(i) the functions a(.$) and b(E) are continuous, 
(ii) for k = k1 the integral in (49) exists and converges absolutely. 

We can then exchange the order of integration on p and in (15b) and (18) so that we 

~l(z,O)=&a(z). &(z,O)=i&b(z) & ( z , O ) = O  (50) 

obtain from (25) and (28) 

and 

Al(x, s) = &n/c a(6) exp(-nsz - 5 IC) de s 

which is the solution in the s-plane of the initial value problem with initial data (50). From 
the definition of the Laplace transform we obtain 
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which we can write (given the absolute convergence of the fist integral) as 

AI(=, s) = f i n c - '  [ dreCSL / d&(c)8[t +nc-'(z -E)] 

There is a similar expression for hz(e, s) so that the inverse Laplace transform of (51) is 

&(e, t )  = JZa(c t /n  + z )  

&(x, t )  = i&b(ct/n + z) (54) 

&(e, r) = 0. 

The expressions (54) give, for t > 0, the most general form of a TEM electromagnetic pulse 
with the initial conditions (50) and propagation in the z-direction. 

For the TE and TM electromagnetic pulses we use the function 
m 

f(P, 0; k) = W)// dv d t b h  t )  + b(r), 01lpl exp[-i(pzv + P ~ D I  (55) 
--CO 

instead of (31) and again we assume the continuity of the functions (I and b and the absolute 
convergence of the double integraI in (55). The initial conditions for the electromagnetic 
field are 

AI(=, 0) = &a(y, z)  (56) 
Since the solutions for the Dmc TE and TM pulses are rather intricate we assume for 
simplicity that b(y, z) = 0. Using (38a), the expression of Al(e, s; a) in terms of the 
Bessel function KO is 

&(z, 0) = -i&b(y, z)  &(z, 0) = i&b(y, z). 

which becomes, with the variables (354, 

nl(z,s; Q) =fin%-'  d@ / r &Q(Y - r sin@, z - r cos@)sKo(nrs/c). 

Now according to the relation (A12) in the appendix we have 

(58) 

sKo(nrs/c) = L(a,[uy - nr/c)(r2 - nzrzc-z)-1'2]] (59) 
and arguing as previously we obtain 

(60) 
Applying (43) to (60) supplies the other two components i\z(z, t ;  a) and &(z, t ;  a). Thus 
we have obtained the general T G T M  electromagnetic pulse with the initial condition (56) 
for the case b = 0. For b # 0 calculations are more intricate and would require a numerical 
integration of the Laplace transform. 
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6. Discussion 

The Laplace transform is a natural tool to tackle electromagnetic initial value problems; 
in the past the Laplace transform has been used by some authors, but mainly for simple 
problems [6,9]. Moses [ll] was the first to stress the role of the Beltrami vectors in 
electromagnetism. His results, largely ignored until the recent blossoming of work on chiral 
media, are now finding more applications (Lakhtakia [17-201) for two reasons: 

(i) as we have seen the Beltrami vectors are very well suited to the 3D complex formalism 
of electromagnetism; 

(ii) as previously discussed [SI this formalism is a powerful tool in chual media because 
it is covariant under the proper Lorentz group excluding space inversion. 

It was natural to combine the Laplace transform and Beltrami vectors to discuss the 
Cauchy problem for Maxwell’s equations. The results of the present work may be used 
with a great variety of sources [13], and they should be of interest to applications such 
as interferences of digital electromagnetic signals [21]. The solution in the s-domain 
is generally easy, but in most cases one has to perform the inverse Laplace transform 
numerically. There now exist powerful codes [22] to do this job, but one must check the 
results carefully because this inversion is technically an ‘ill-posed’ problem [14]. 

Appendix 

Let us consider the expression (36) for AI@,  s; a): 

A l ( z ,  s; a)  = as(2n2)-”’ lm Ipl dlpl(s2 + c2n-’lp/)-’ 1 d8exp[-irlplcos(Q 
2ir 

0 

Using the well known relation [23] 

/b dQ exp[irlpl cos@ -@)I = Jo(rlp[) 
0 

where Jo is the Bessel function of the first kind of order zero, we obtain 

This integral is of the Hankel type, and we have [24] 

where KO is the modified Bessel function of the second kind of order zero. Substituting 
(A4) into (A3) gives 

A,(=, s; a)  = i/zanZc-2sKo(nrs/c). (A5) 
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Now taking into account (U) we rewrite the expression (36b) for A1 (2, s; b): 

A~(z,s; b) = -i&bnc-’ lplZdlplJo(rlpl)(lp12+n2c-2sz)-’. (A6) 

This last expression is also an in t ep l  of Hankel‘s type, and one has in terms of the 
hyper-geometric function lF2 

r 

With the variable ea = 2c/nrs we have [23] 

Then, substituting (A7) into (A6) and taking into account (A8), we find 

AI(%, s; b) = -&bn2c-2se-a/z(1 - e-”)-‘Q&2(cosha) - i f ibnc-’r( l  -e-”)-‘. 

(AS) 

We now have to consider the inverse Laplace transform of (AS) and (AS) using [15] 

L-’[Ko(snr/c)] = (t2 - nzr2/c2)-1/2U(t - nr/c) M O )  

where U is the step function. Using the relation [IO] 

sF(s)  = d/dtF(t) + F(0)  (All) 

we obtain from (A10) 

L-’[sKo(snc-’r)] = &{U(t - nr/c)(t2 - n2c-2r2)-1/2] 
= - t U ( t  - nr/c)(t2 - n2~-2r2)-3/2 + 6(r - nr/c)(t2 - n2c-2r2)-1/2. (A12) 

Taking into account (A5) and (A12) the inverse Laplace transform of Al(z,  s; a)  is 

il(z, t ;  a)  = 21’2an2c-2at{[t2 - n2 - ~ - ~ r ~ ] % ( t  - ncr-I)]. (A13 

We have also [16] 

L-’[(I -e-”)-’] = zc/nrsinh(k/nr) 6414) 

and we note 

k(t - nr/c) = L-’[sea/2(1 - e-2”)Q~,,2(cosa)l. (A151 

It does not seem that there exists an analytical expression for (A15) so E(t - nr/c) has to 
be computed numerically. 
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From (As), (A14) and (AlS) we obtain the inverse Laplace transform of A,(%, s; b): 

& (z. f ;  b )  = -1/Zbn2c-'E(f - nr/c) - Zi1/Z~r-'sinh(2ct/nbr). (A16) 

One has still to prove that the initial condition (32) for AI(%, t )  = AI(%, t;  a) +AI(%, t;  b) 
is fulfilled. First using the relation [lo] 

lim F ( f )  = lim sF(s) ( ~ 1 7 )  
t-0 s+m 

we obtain from (A6), (A7) and (A16) 

~imA,(z ,  i; b) = lim {-snc-lslFz(q, 1. 1;'n2r2s2/4c2) + r - l s ~ ( 1 ,  +, 1; n2r2s2/4c2]. 
t+O s+m 

(-418) 

But for s + cc one has 12.31 

(-419)  IF^($, $, 1; n 2 2 2  r J /4c2) = w3) ]&(I, j, 1 3 ,  1 .  n 2 r 2 s 2 / 4 c 2) = q s - Z )  

where the symhol O(S-~)  means that in the neighborhood of infinity the functions 1 F2 
behave as s-"'. So according to (A19) the right-hand side of (A18) is zero~at infinity. This 
means that AI(%, 0; 6 )  = 0. We now obtain from (A13) 

(-420) rim 61(z, t; a) = f i a J ( r ) / r  = & a ~ ( y  - q ) ~ ( z  - 8) 
t-0 

since one has [151 

W ) / r  = S ( Y  - M z  - C) 
and (A2.1) is exactly the initial condition (32). 
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